Least squares based and gradient based iterative identification for Wiener nonlinear systems

نویسندگان

  • Dongqing Wang
  • Feng Ding
چکیده

This paper derives a least squares-based and a gradient-based iterative identification algorithms for Wiener nonlinear systems. These methods separate one bilinear cost function into two linear cost functions, estimating directly the parameters of Wiener systems without re-parameterization to generate redundant estimates. The simulation results confirm that the proposed two algorithms are valid and the least squares-based iterative algorithm has faster convergence rates than the gradient-based iterative algorithm. & 2010 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Least-Squares-Based Iterative Identification Algorithm for Wiener Nonlinear Systems

This paper focuses on the identification problem ofWiener nonlinear systems.The application of the key-term separation principle provides a simplified form of the estimated parameter model. To solve the identification problem of Wiener nonlinear systems with the unmeasurable variables in the information vector, the least-squares-based iterative algorithm is presented by replacing the unmeasurab...

متن کامل

Hammerstein and Wiener Model Identification Using Rational Orthonormal Bases

In this paper, non iterative algorithms for the identification of (multivariable) Hammerstein and Wiener systems are presented. The proposed algorithms are numerically robust, since they are based only on least squares estimation and singular value decomposition. For the Hammerstein model, the algorithm provides consistent estimates even in the presence of coloured output noise, under weak assu...

متن کامل

Gradient-Based Iterative Identification for Wiener Nonlinear Dynamic Systems with Moving Average Noises

This paper focuses on the parameter identification problem for Wiener nonlinear dynamic systems with moving average noises. In order to improve the convergence rate, the gradient-based iterative algorithm is presented by replacing the unmeasurable variables with their corresponding iterative estimates, and to compute iteratively the noise estimates based on the obtained parameter estimates. The...

متن کامل

Recursive Extended Least Squares Parameter Estimation for Wiener Nonlinear Systems with Moving Average Noises

Many control algorithms are based on the mathematical models of dynamic systems. System identification is used to determine the structures and parameters of dynamic systems. Some identification algorithms (e.g., the least squares algorithm) can be applied to estimate the parameters of linear regressive systems or linear-parameter systems with white noise disturbances. This paper derives two rec...

متن کامل

Identification of Nonlinear Systems using Orthonormal Bases

In this paper, non iterative algorithms for the identification of (multivariable) nonlinear systems consisting of the interconnection of LTI systems and static nonlinearities are presented. The proposed algorithms are numerically robust, since they are based only on least squares estimation and singular value decomposition. Three different block-oriented nonlinear models are considered in this ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Signal Processing

دوره 91  شماره 

صفحات  -

تاریخ انتشار 2011